Switching between novel samarium(II)-mediated cyclizations by a simple change in alcohol cosolvent

Thomas K. Hutton, Kenneth W. Muir and David J. Procter*

Department of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ.

davidp@chem.gla.ac.uk

Contents

S2-S29	Experimental
S30-S62	¹ H and ¹³ C-NMR spectra of new compounds
S63-S81	X-ray Crystallographic data for 5, 15, 35

Experimental

General Experimental Considerations have been described previously.¹

General Samarium(II) Cyclisation Procedure A

rel-(5R, 6R)-6-hydroxy-6,7,7-trimethyl-2-oxa-spiro[4.4]nonan-1-one 5

Dry MeOH (1.4 ml) was added to a stirred solution of SmI₂ (0.1 M in THF, 5.10 ml, 0.510 mmol, 4 eq) at 0°C and the resulting solution was stirred for 10 min. (E)-3-(3,3-Dimethyl-4-oxo-pentylidene)-dihydro-furan-2-one 4 (25 mg, 0.127 mmol, 1 eq), in THF (0.5 ml) was added, and the resultant solution stirred at 0°C for 2 h. The reaction was quenched by opening to the air, followed by the addition of aqueous saturated NaCl (10 ml). The aqueous layer was separated and extracted with 80% EtOAc in petroleum ether (40-60°C) (4 x 15 ml). The combined organic extracts were dried (MgSO₄), and concentrated *in vacuo* to give the crude product. Purification by column chromatography (eluting with 40% EtOAc in petroleum ether (40-60°C)), gave rel-(5R, 6R)-6-hydroxy-6,7,7-trimethyl-2-oxa-spiro[4.4]nonan-1-one **5** (15.8 mg, 0.08) mmol, 63%) as a white crystalline solid: mp 87 - 90°C (20% EtOAc in petroleum ether (40-60°C)): n_{max} (neat)/cm⁻¹ 3431s (OH), 1733s (C=O), 1471m, 1376m, 1221m, 1199m and 1026m; d_H (400 MHz, CDCl₃) 0.87 (3H, s, CH₃), 1.02 (3H, s, CH₃), 1.10 $(3H, s, CH_3)$, 1.52 - 1.59 $(1H, m, 1H from C(CH_3)_2CH_2)$, 1.66 - 1.72 $(1H, m, 1H from C(CH_3)_2CH_2)$ $C(CH_3)_2CH_2CH_2$, 1.84 – 1.91 (1H, m, 1H from $C(CH_3)_2CH_2$), 2.02 – 2.07 (1H, m, 1H from OCH_2CH_2), 2.15 - 2.23 (1H, m, 1H from $C(CH_3)_2CH_2CH_2$), 2.34 - 2.42 (1H, m, 1H from OCH₂CH₂), 4.09 - 4.15 (1H, m, 1H from OCH₂), 4.23 - 4.28 (1H, m, 1H from OC H_2) and 4.65 (1H, s, OH); d_C (100 MHz, CDCl₃) 19.3 (CH_3), 24.0 (CH_3), 27.6 (CH_3) , 33.2 $(C(CH_3)_2CH_2CH_2)$, 35.1 (OCH_2CH_2) , 38.7, $(C(CH_3)_2CH_2)$, 46.0 $(C(CH_3)_2)$,

¹ Edmonds, D. J.; Muir, K. W.; Procter, D. J. J. Org. Chem. **2003**, 68, 3190.

55.2 (CC(O)), 65.8 (OCH_2), 84.8 ($C(OH)CH_3$) and 183.3 (C(O)); m/z (EI mode) 198 (($M^{+\bullet}$) 10%), 180 (25), 170 (20), 153 (40), 138 (25), 128 (95), 112 (100), 99 (100), 85 (100), 83 (100), 55 (25) and 43 (55); (Found: C, 66.82; H, 9.35; $C_{11}H_{18}O_3$ requires C, 66.64; H, 9.15).

General Oxidation/Olefination Procedure B

(E)-3-(4-Oxo-pentylidene)-dihydro-furan-2-one 6

DMSO (681 ml, 9.60 mmol, 4 eq) was added to a stirred solution of (COCl), (419 ml, 4.80 mmol, 2 eq) in CH₂Cl₂ (10 ml) at -78°C and the resulting solution was stirred for 10 min. 1,4-Pentanediol (250 mg, 2.40 mmol, 1 eq) was then added as a solution in CH₂Cl₂ (10 ml) and the resultant solution stirred for a further 30 min. Triethylamine (3.44 ml, 24.0 mmol, 10 eq) was then added. After 2 h (1butyrolactonylidene)triphenylphosphorane (1.66 g, 4.80 mmol, 2 eq) was added as a solution in CH₂Cl₂ (20 ml) and the reaction mixture allowed to warm to room temperature and stirred for 16 h. Aqueous saturated NaHCO₃ (10 ml) was then added, and the aqueous layer was separated and extracted with 80% EtOAc in petroleum ether (40-60°C) (4 x 20 ml). The combined organic extracts were dried (MgSO₄), and concentrated in vacuo to give the crude product. Purification by column chromatography (eluting with 25% EtOAc in petroleum ether (40-60°C)), gave (E)-3-(4-oxo-pentylidene)-dihydro-furan-2-one 6 (399 mg, 2.37 mmol, 99%) as a yellow oil: n_{max} (neat)/cm⁻¹ 1739s (lactone C=O), 1716s (ketone C=O), 1681s (C=C), 1405m, 1383m, 1238m, 1190m, 1038m, 1021m and 997m; d_H (400 MHz, CDCl₃) 2.19 (3H, s, $C(O)CH_3$, 2.46 (2H, apparent q, J 7.1, $CH_2CH=C$), 2.67 (2H, t, J 7.1 $CH_2C(O)$), 2.96 (2H, dt, J 2.9, 7.5, CH₂CH₂O), 4.41 (2H, t, J 7.5, CH₂O) and 6.64 (1H, tt, J 2.9, 7.5, CH=C); d_C (100 MHz, $CDCl_3$) 24.5 ($CH_2CH=C$), 25.5 ($CH=CCH_2$), 30.4 ($C(O)CH_3$), 41.8 (CH₂C(O)), 65.9 (CH₂O), 126.9 (CH=C), 138.9 (CH=C), 171.5 (C(O)O) and 207.0 (C(O)); m/z (EI mode) 168 (($M^{+\bullet}$) 10%), 125 (60), 111 (5), 83 (100), 79 (15) and 47 (20); (Found: ($M^{+\bullet}$), 168.0785. $C_9H_{12}O_3$ requires M, 168.0786).

(E)-3-(4-Oxo-hexylidene)-dihydro-furan-2-one 7

As for general procedure B. Hexane-1,4-diol (180 mg, 1.52 mmol, 1 eq), after oxidation and reaction with (1-butyrolactonylidene)triphenylphosphorane (1.05 g, 3.04 mmol, 2 eq) for 16 h and purification of the crude product mixture by column chromatography (eluting with 80% EtOAc in petroleum ether (40-60°C)), gave (*E*)-3-(4-oxo-hexylidene)-dihydro-furan-2-one **7** (115 mg, 0.63 mmol, 42%) as a pale yellow oil: n_{max} (neat)/cm⁻¹ 1747s (ester C=O), 1709s (ketone C=O), 1679s (C=C), 1374m, 1352m, 1211m and 1022m; d_H (400 MHz, CDCl₃) 1.08 (3H, t, *J* 7.4, CH₃), 2.43 – 2.50 (4H, m, 2H from CH₂CH₃, 2H from CH₂CH=C), 2.64 (2H, t, *J* 7.1, CH₂C(O)), 2.93 (2H, dt, *J* 3.0, 7.5, CH₂CH₂O), 4.40 (2H, t, *J* 7.5, CH₂O) and 6.63 (1H, tt, *J* 3.0, 7.6, CH=C); d_C (100 MHz, CDCl₃) 8.1 (CH₃), 24.5 (CH₂CH=C), 25.5 (CH₂C=CH), 36.4 (CH₂CH₃), 40.5 (CH₂C(O)), 65.9 (CH₂O), 126.8 (CH=C), 139.1 (CH=C), 171.6 (C(O)O) and 209.9!(C(O)); m/z (EI mode) 182 ((M⁺⁺) 45%), 153 (10), 125 (100), 109 (15), 97 (15), 81 (50), 57 (65) and 53 (20); (Found: (M⁺⁺)), 182.0942. $C_{10}H_{14}O_3$ requires M, 182.0943).

(E)-3-(5-Methyl-4-oxo-hexylidene)-dihydro-furan-2-one 8

As for general procedure B. 5-Methyl-hexane-1,4-diol (200 mg, 1.51 mmol, 1 eq), after oxidation and reaction with (1-butyrolactonylidene)triphenylphosphorane (1.05 g, 3.03 mmol, 2 eq) for 16 h and purification of the crude product mixture by column chromatography (eluting with 80% EtOAc in petroleum ether (40-60°C)), gave (*E*)-3-(5-methyl-4-oxo-hexylidene)-dihydro-furan-2-one **8** (196 mg, 1.00 mmol, 66%) as a pale yellow oil: n_{max} (neat)/cm⁻¹ 2970w, 1749s (ester C=O), 1707s (ketone C=O), 1680s (C=C), 1468m, 1381m, 1215m, 1194m and 1026m; d_H (400 MHz, CDCl₃) 1.11 (3H, d, *J* 7.0, CH(CH₃)₂), 1.45 (3H, d, *J* 7.0, CH(CH₃)₂), 2.47 (2H, apparent q, *J* 8.8, CH₂CH=C), 2.65 (1H, septet, *J* 7.0, CH(CH₃)₂), 2.79 (2H, t, *J* 6.4, CH₂C(O)), 2.94 – 3.00 (2H, m, CH₂CH₂O), 4.40 (2H, t, *J* 7.4, CH₂O) and 6.63 (1H, tt, *J* 2.9, 7.6, CH=C); d_C (100 MHz, CDCl₃) 18.6 (CH(CH₃)₂), 18.7 (CH(CH₃)₂), 24.6 (CH₂CH=C), 25.5 (CH₂CH₂O), 38.5 (CH₂C(O)), 41.3 (CH(CH₃)₂), 65.9 (CH₂O), 122.6 (CH=C), 139.3 (CH=C), 171.6 (C(O)O) and 213.2 (C(O)); *m*/*z* (EI mode) 196 ((M**) 35%), 153 (25), 125 (100), 109 (30), 81 (50), 79 (30) and 43 (50); (Found: (M**), 196.1100. C₁₁H₁₆O₃ requires *M*, 196.1099).

(E)-3-(4-Oxo-5-phenyl-pentylidene)-dihydro-furan-2-one 9

As for general procedure B. 5-Phenyl-pentane-1,4-diol (100 mg, 0.56 mmol, 1 eq), after oxidation and reaction with (1-butyrolactonylidene)triphenylphosphorane (385 mg, 1.11 mmol, 2 eq) for 16 h and purification of the crude product mixture by column chromatography (eluting with 40% EtOAc in petroleum ether (40-60°C)), gave (*E*)-3-(4-oxo-5-phenyl-pentylidene)-dihydro-furan-2-one **9** (78 mg, 0.34 mmol, 61%) as a yellow oil: n_{max} (neat)/cm⁻¹ 2917s, 1751s (lactone C=O), 1717s (ketone C=O), 1681s (C=C), 1497m, 1454m, 1438m, 1412m, 1382m, 1360m, 1194m, 1030m and 961m; d_H (400 MHz, CDCl₃) 2.43 (2H, apparent q, *J* 7.1, C*H*₂CH=C), 2.67 (2H, t,

 $J7.1 \text{ C}H_2\text{C}(\text{O})$), 2.91 (2H, dt, J3.0, 7.4, $CH_2\text{C}=\text{CH}$), 3.72 (2H, s, $CH_2\text{Ph}$), 4.38 (2H, t, J7.4, $CH_2\text{O}$), 6.57 (1H, tt, J3.0, 7.4, CH=C), 7.20 – 7.22 (1H, m, Ar CH), 7.26 – 7.32 (2H, m, 2 x Ar CH) and 7.34 – 7.38 (2H, m, 2 x Ar CH); d_C (100 MHz, CDCl₃) 24.5 (CH₂CH=C), 25.4 (CH₂C=CH), 40.2 (CH₂C(O)), 50.7 (CH₂Ph), 65.8 (CH₂O), 127.0 (CH=C), 127.7 (Ar CH), 129.3 (2 x Ar CH), 129.7 (2 x Ar CH), 134.2 (Ar C), 138.8 (CH=C), 171.5 (C(O)O) and 206.9 (C(O)); m/z (EI mode) 244 ((M⁺⁺) 37%), 223 (5), 205 (2), 176 (5), 153 (100), 125 (45), 119 (65), 91 (100), 81 (50), 65 (40) and 41 (22); (Found: (M⁺⁺), 244.1099. C₁₅H₁₆O₃ requires M, 244.1099).

(E)-3-(4-Oxo-4-cyclopropyl-butylidene)-dihydro-furan-2-one 10

As for general procedure B. 1-Cyclopropyl-butane-1,4-diol (408 mg, 2.45 mmol, 1 eq), after oxidation and reaction with (1-butyrolactonylidene)triphenylphosphorane (1.70g, 4.92mmol, 2 eq) for 16 h and purification of the crude product mixture by column chromatography (eluting with 50% EtOAc in petroleum ether (40-60°C)), gave (E)-3-(4-oxo-4-cyclopropyl-butylidene)-dihydro-furan-2-one 10 (111 mg, 0.57 mmol, 48%) as a white crystalline solid: mp 67 – 69°C (20% Et₂O in petroleum ether (30-40°C): n_{max} (neat)/cm⁻¹ 2951m, 2899m, 1738s (lactone C=O), 1693s (ketone C=O), 1678s (C=C), 1496m, 1311m and 815m; d_H (400 MHz, CDCl₃) 0.79 - 0.85 $(2H, m, CH(OH)CHCH_2^A), 0.94 - 0.98 (2H, m, CH(OH)CHCH_2^B), 1.78 - 1.90 (1H, CHCH_2^B)$ m, CH(OH)CH), 2.40 (2H, apparent q, J 7.3, CH₂CH=C), 2.72 (2H, t, J 7.3, $CH_2C(O)$), 2.86 (2H, apparent q, J 7.4, $CH_2C=CH$), 4.30 (2H, t, J 7.4, CH_2O) and 6.60 (1H, tt, J 1.6, 7.3, CH=C); d_C (100 MHz, $CDCl_3$) 9.3 ($C(OH)CHCH_2^A$), 9.4 (C(OH)CHCH₂^B), 19.0 (CH(OH)CH), 22.7 (CH₂CH=C), 23.5 (CH₂C=CH), 39.6 (CH₂C(O)), 63.9 (CH₂O), 124.7 (CH=C) 137.3 (CH=C), 169.6 (C(O)O) and 207.3 $(C(O)); m/z \text{ (EI mode) } 194 \text{ ((M}^{+\bullet}), 28\%), 125 \text{ (100)}, 85 \text{ (50)}, 83 \text{ (76)}, 69 \text{ (83)}, 47 \text{ (16)}$ and 41 (39); (Found: $(M^{+\bullet})$ 194.0942. $C_{11}H_{14}O_3$ requires M, 194.0943).

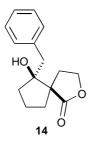
rel-(5R, 6R)-6-Hydroxy-6-methyl-2-oxa-spiro[4.4]nonan-1-one 11²

As for general procedure A. (E)-3-(4-Oxo-pentylidene)-dihydro-furan-2-one 6 (50 mg, 0.30 mmol, 1 eq), after a reaction time of 2 h and purification of the crude product mixture by column chromatography (eluting with 50% EtOAc in petroleum ether (40-60°C)), gave rel-(5R, 6R)-6-hydroxy-6-methyl-2-oxa-spiro[4.4]nonan-1-one **11** (36 mg, 0.21 mmol, 71%) as a clear, colourless oil: n_{max} (neat)/cm⁻¹ 3480bs (OH), 2971s, 2874s, 1758s (C=O), 1450m, 1376s, 1302w, 1200m, 1149m, 1103m, 1030m, 1001m, 958m and 937m; d_H (400 MHz, CDCl₃) 1.23 (3H, s, C(OH)CH₃), 1.58 – 1.75 (3H, m, 1H from CH₂CH₂CH₂C(OH), 1H from CH₂CH₂C(OH), 1H from CH₂C(OH)), 1.88 (1H, ddd, J 3.0, 6.7, 12.7, 1H from CH₂CH₂O), 1.92 – 1.99 (2H, m, 1H from $CH_2CH_2CH_2C(OH)$, 1H from $CH_2CH_2C(OH)$), 2.22 – 2.31 (2H, m, 1H from CH₂C(OH), 1H from CH₂CH₂O), 3.60 (1H, s, OH), 4.15 (1H, dt, J 6.7, 9.0, 1H from CH_2O) and 4.27 (1H, dt, J 3.0, 9.0, 1H from CH_2O); d_C (100 MHz, $CDCl_3$) 20.7 $(CH_2CH_2C(OH))$, 23.3 (CH_3) , 32.4 (CH_2CH_2O) , 34.1 $(CH_2C(OH))$, 39.0 $(CH_2CH_2CH_2C(OH))$, 55.0 (CC(O)), 65.8 (CH_2O) , 82.2 (C(OH)) and 182.0 (C(O)); *m/z* (EI mode) 170 ((M^{+•}) 7%), 155 (2), 128 (7), 112 (40), 99 (100), 72 (25), 53 (10) and 43 (35); (Found: $(M^{+\bullet})$, 170.0942. $C_9H_{14}O_3$ requires M, 170.0943).

rel-(5R, 6R)-6-Ethyl-6-hydroxy-2-oxa-spiro[4.4]nonan-1-one 12

As for general procedure A. 3-(E)-(4-Oxo-hexylidene)-dihydro-furan-2-one **7** (40 mg, 0.22 mmol, 1 eq), after a reaction time of 1 h and purification of the crude product

² Molander, G. A.; Etter, J. B.; Zinke, P. W. J. Am. Chem. Soc. **1987**, 109, 453.


S7

mixture by column chromatography (eluting with 60% EtOAc in petroleum ether (40-60°C)), gave rel-(5R, 6R)-6-ethyl-6-hydroxy-2-oxa-spiro[4.4]nonan-1-one **12** (24 mg, 0.13 mmol, 60%) as a yellow oil: n_{max} (neat)/cm⁻¹ 3477bs (OH), 2968s, 1740s (C=O), 1371s, 1190s, 1032m, 1022m and 962m; d_{H} (400 MHz, CDCl₃) 0.90 (3H, t, J 7.4, C H_3), 1.43 – 1.52 (2H, m, 1H from C H_2 CH₃, 1H from C H_2 C), 1.54 – 1.62 (1H, m, 1H from C H_2 CH₃), 1.63 – 1.69 (1H, m, 1H from C H_2 CH₂C), 1.72 – 1.78 (1H, m, 1H from C H_2 C(OH)), 1.85 – 1.96 (3H, m, 1H from C H_2 CH₂O, 1H from C H_2 C, 1H from C H_2 CH₂C), 2.20 – 2.26 (2H, m, 1H from C H_2 C(OH), 1H from C H_2 CH₂O), 3.92 (1H, s, OH), 4.15 (1H, dt, J 6.8, 9.2, 1H from C H_2 O) and 4.28 (1H, dt, J 2.7, 9.2, 1H from C H_2 O); d_C (100 MHz, CDCl₃) 8.7 (CH₃), 20.7 (CH₂CH₂C), 29.1 (CH₂CH₃), 30.2 (CH₂CH₂O), 34.7 (CH₂C(OH)), 36.9 (CH₂C), 54.0 (C), 65.7 (CH₂O), 85.1 (C(OH)) and 182.9 (C(O)); m/z (CI mode, isobutane) 185 ((M + H)⁺ 100%), 167 (80), 155 (2), 139 (1), 123 (2), 99 (2), 85 (5) and 71 (5); (Found: (M + H)⁺, 185.1178. C₁₀H₁₇O₃ requires M, 185.1178).

rel-(5R, 6S)-6-Hydroxy-6-isopropyl-2-oxa-spiro[4.4]nonan-1-one 13

As for general procedure A. 3-(*E*)-(5-Methyl-4-oxo-hexylidene)-dihydro-furan-2-one **8** (50 mg, 0.26 mmol, 1 eq), after a reaction time of 2 h and purification of the crude product mixture by column chromatography (eluting with 60% EtOAc in petroleum ether (40-60°C)), gave rel-(5R, 6S)-6-hydroxy-6-isopropyl-2-oxa-spiro[4.4]nonan-1-one **13** (24 mg, 0.12 mmol, 47%) as a white crystalline solid: mp 43 – 46°C (petroleum ether (40-60°C)): n_{max} (neat)/cm⁻¹ 3446bs (OH), 2966s, 1734s (C=O), 1470m, 1441m, 1371m, 1186m and 1018m; d_H (400 MHz, CDCl₃) 0.75 (3H, d, *J* 6.7, CH(C H_3)₂), 0.93 (3H, d, *J* 6.7, CH(C H_3)₂), 1.40 – 1.45 (1H, m, 1H from C H_2 C), 1.65 – 1.70 (1H, m, 1H from C H_2 CH₂C), 1.77 – 1.83 (3H, m, 1H from C H_2 CH₂C) 1H from C H_2 C(OH)), 1.91 – 1.98 (2H, m, 1H from C H_2 C, 1H from C H_2 CH₂O), 2.20 – 2.28 (2H, m, 1H from C H_2 C(OH)), 1H from C H_2 CH₂O), 4.15 (1H,

dt, J 5.4, 9.1, 1H from CH_2O), 4.32 (1H, s, OH) and 4.33 (1H, dt, J 1.7, 9.1, 1H from CH_2O); d_C (100 MHz, $CDCl_3$) 17.4 ($CH(CH_3)_2$), 18.4 ($CH(CH_3)_2$), 20.8 (CH_2CH_2C), 30.8 (CH_2CH_2O), 33.7 ($CH(CH_3)_2$), 35.5 ($CH_2C(OH)$), 38.2 (CH_2C), 52.8 (C), 65.6 (CH_2O), 87.2 (C(OH)) and 183.9(C(O)); m/z (EI mode) 198 ((M^{+*}) 5%), 180 (3), 155 (100), 152 (5), 127 (10), 99 (45), 83 (80), 71 (15), 55 (20) and 43 (17); (Found: (M^{+*}), 198.1257. $C_{11}H_{18}O_3$ requires M, 198.1256).

rel-(5R, 6S)-6-Benzyl-6-hydroxy-2-oxa-spiro[4.4]nonan-1-one 14

As for general procedure A. (E)-3-(4-Oxo-5-phenyl-pentylidene)-dihydro-furan-2-one 9 (40 mg, 0.17 mmol, 1 eq), after a reaction time of 2 h and purification of the crude product mixture by column chromatography (eluting with 50% EtOAc in petroleum ether (40-60°C)), gave rel-(5R, 6S)-6-benzyl-6-hydroxy-2-oxa-spiro[4.4]nonan-1-one 14 (27 mg, 0.12 mmol, 68%) as a white crystalline solid: mp 70 – 72°C (petroleum ether (40-60°C)): n_{max} (neat)/cm⁻¹ 3428bs (OH), 3026w, 2978w, 1752s, (C=O), 1456m, 1380m, 1225m, 1183m and 1033m; d_H (400 MHz, CDCl₃) 1.61 – 1.80 (4H, m, $CH_2CH_2C(OH)$, $CH_2CH_2CH_2C(OH)$), 1.89 – 1.98 (2H, m, 1H from $CH_2C(OH)$, 1H from CH_2CH_2O), 2.21 - 2.29 (1H, m, 1H from $CH_2C(OH)$), 2.46 - 2.54 (1H, m, 1H from CH₂CH₂O), 2.78 (2H, apparent s, CH₂Ph), 3.78 (1H, s, OH), 4.17 (1H, apparent dt, J 2.6, 9.0, 1H from CH_2O), 4.32 (1H, apparent dt, J 2.6, 9.0, 1H from CH_2O) and 7.14 - 7.24 (5H, m, Ar CH); d_C (100 MHz, CDCl₃) 20.4 (CH₂C), 31.9 (CH₂CH₂O), 34.6 (CH₂C(OH)), 36.6 (CH₂CH₂C(OH)), 41.9 (CH₂Ph), 54.6 (C), 65.6 (CH₂O), 84.5 (C(OH)), 127.1 (Ar CH), 128.5 (2 x Ar CH), 130.7 (2 x Ar CH), 137.2 (Ar C) and 182.0 (C(O)); m/z (EI mode) 246 ((M^{+*}) 5%), 156 (15), 155 (100), 111 (65), 92 (95), 91 (60), 55 (20) and 41 (15); (Found: (M^{+*}) , 246.1257. $C_{15}H_{18}O_3$ requires M, 246.1256).

rel-(5R, 6S)-6-Cyclopropyl-6-hydroxy-2-oxa-spiro[4.4]nonan-1-one 15

As for general procedure A. (E)-3-(4-Oxo-4-cyclopropyl-butylidene)-dihydro-furan-2-one 10 (30mg, 0.16 mmol, 1 eq), after a reaction time of 2 h and purification of the crude product mixture by column chromatography (eluting with 20% EtOAc in petroleum ether (40-60°C)), gave rel-(5R, 6S)-6-cyclopropyl-6-hydroxy-2-oxaspiro[4.4]nonan-1-one 15 (15mg, 0.08 mmol, 49%) as a white crystalline solid: mp 57 -59°C (20% Et₂O in petroleum ether (30-40°C): n_{max} (neat)/cm⁻¹ 3050(OH), 2759w, 1743s (C=O), 1384m, 1182m, 1076m, 1018m and 953m; d_H (400 MHz, CDCl₃) 0.27 - 0.37 (3H, m, 2H from C(OH)CHCH₂^A, 1H from C(OH)CHCH₂^B), 0.46 - 0.50 (1H, m, 1H from $C(OH)CHCH_2^B$), 0.80 - 0.83 (1H, m, C(OH)CH), 1.63 - 1.83 (4H, m, 1H) from CH₂C(OH), 3H from CH₂), 1.89 - 1.97 (2H, m, 1H from CH₂CH₂O, 1H from CH_2), 2.26 - 2.28 (1H, m, 1H from $CH_2C(OH)$), 2.50 - 2.55 (1H, m, 1H from CH₂CH₂O), 3.62 (1H, s, OH), 4.20 (1H, dt, J 7.2, 8.5, 1H from CH₂O) and 4.29 - 4.34 (1H, td, J 4.2, 8.5, 1H from CH_2O); d_C (100 MHz, $CDCl_3$) -0.67 ($C(OH)CHCH_2^A$), 0.0 (C(OH)CHCH₂^B), 14.2 (C(OH)CH), 19.9 (CH₂), 31.4 (CH₂CH₂O), 34.3 $(CH_2C(OH))$, 36.6 (CH_2) , 54.2 (CC(O)), 65.3 (CH_2O) , 82.2 (C(OH)) and 182.1 (C(O)); m/z (EI mode) 196 $((M^{+\bullet}), 26\%), 112 (79), 99 (59), 98 (32), 85 (65), 83$ (100), 69 (50) 48 (19) and 41 (24); (Found: (M^{+*}) 196.1100. $C_{11}H_{16}O_3$ requires M, 196.1099).

1-Benzyl-3-(diethoxyphosphinyl)-pyrrolidin-2-one 17

A solution of LDA was prepared by the addition of diisopropylamine (802 ml, 5.70 mmol, 2 eq) to a stirred solution of BuLi (2.5 M in Hexanes, 2.85 ml, 5.70 mmol, 2 eq) in THF (2.5 ml) at -5°C, and the resultant solution was stirred for 30 min. A solution of 1-benzyl-pyrrolidin-2-one (500 mg, 2.85 mmol, 1 eq) in THF (3ml) was then added via cannula, and the temperature raised to 15°C and the solution stirred for 10 min. A solution of diethylchlorophosphate (420 ml, 2.85 mmol, 1 eq) in THF (2 ml) was then added via cannula, whereupon the temperature rose to 25°C. The resulting solution was stirred at room temperature for 3 h. The solution was then acidified to pH 1 (2 M aqueous HCl), and the aqueous layer was separated and extracted with CH₂Cl₂ (3 x 30 ml). The combined organic extracts were dried (MgSO₄), and concentrated in vacuo to give the crude product. Purification by flash column chromatography (50% EtOAc in petroleum ether (40-60°C) to remove nonpolar impurities, then with 50% EtOAc in MeCN) gave 1-benzyl-3-(diethoxyphosphinyl)-pyrrolidin-2-one 17 (481 mg, 1.55 mmol, 54%) as a brown oil: n_{max} (neat)/cm⁻¹ 2983s, 2909s, 1693s (C=O), 1496m, 1455m, 1440m, 1258m (P=O), 1164w, 1059m (P–O) and 961m; d_H (400 MHz, CDCl₃) 1.26 (3H, t, J 7.1, OCH₂CH₃), 1.29 (3H, t, J 7.1, OCH₂CH₃), 2.19 – 2.37 (2H, m, CH₂CHP), 2.94 (1H, ddd, J_{HP} , 22.0, J 5.3, 10.2, CHP), 3.12 – 3.18 (1H, m, 1H from CH₂N), 3.33 (1H, apparent q, J 7.7, 1H from CH_2N), 4.08 - 4.23 (4H, m, 2 x OCH_2), 4.36 (1H, d, J 14.8, AB system, 1H from CH₂Ph), 4.46 (1H, d, J 14.8, AB system, 1H from CH₂Ph), 7.15 – 7.23 (3H, m, 3 x Ar CH) and 7.24 - 7.28 (2H, m, 2 x Ar CH); d_C (100 MHz, CDCl₃) 16.8 (d, J_{CP} 4.1, OCH_2CH_3), 16.8 (d, J_{CP} 4.1, OCH_2CH_3), 20.6 (d, J_{CP} 3.9, NCH_2CH_2), 41.4 (d, J_{CP} 141.2, CHP), 45.7 (d, J_{CP} 3.9, NCH₂), 47.4 (CH₂Ph), 62.7 (d, J_{CP} 6.6, OCH₂), 63.4 (d, J_{CP} 6.6, OCH₂), 128.0 (Ar CH), 128.5 (2 x Ar CH), 129.1 (2 x Ar CH), 136.4 (Ar C) and 169.7 (d, J_{CP} 4.0 C(O)); d_P (81MHz, CDCl₃) 24.4; m/z (EI mode) 311 ((M⁺) 80%), 282 (10), 254 (5), 238 (2), 220 (15), 179 (15), 174 (40), 145 (20), 119 (25), 91 (100), 83 (30), 65 (10) and 47 (7); (Found: (M^{+*}) , 311.1285. $C_{15}H_{22}O_4NP$ requires M, 311.1286).

4-Oxo-pentanal 18³

To a stirred solution of 3-acetylpropanol (5.00 g, 50.0 mmol, 1 eq) in CH_2Cl_2 (150 ml) at room temperature was added pyridinium chlorochromate (16.2 g, 75.0 mmol, 1.5 eq) and the resulting solution stirred for 16 h. The reaction mixture was passed through a plug of silica and concentrated *in vacuo* to give the crude product. Purification by column chromatography (eluting with CH_2Cl_2) gave 4-oxo-pentanal **18** (3.53 g, 35.3 mmol, 71%) as a clear, colourless oil: n_{max} (neat)/cm⁻¹ 2729s, 1716bs (2 x C=O), 1428bs, 1170w, 1132w, 1080w, 961m and 879m; d_H (400 MHz, CDCl₃) 2.23 (3H, s, CH_3), 2.77 (4H, s, 2 x CH_2) and 9.83 (1H, s, CHO); d_C (100 MHz, $CDCl_3$) 30.2 (CH_3), 35.9 (CH_2COCH_3), 27.8 (CH_2CHO), 200.8 (CHO) and 206.8 ($COCH_3$); m/z ($CICH_3$) and 101 ((OCH_3), 57 (100) and 56 (10); (Found: (OCH_3) (OCH_3) requires OCH_3 0. (OCH_3 1) and 56 (10); (Found: (OCH_3 2) requires OCH_3 3 (OCH_3 3).

4-Oxo-hexanal 194

DMSO (361 ml, 5.08 mmol, 4 eq) was added to a stirred solution of $(COCl)_2$ (222 ml, 2.54 mmol, 2 eq) in CH_2Cl_2 (10 ml) at $-78^{\circ}C$ and the resulting solution was stirred for 10 min. Hexane-1,4-diol (150 mg, 1.27 mmol, 1 eq) was then added as a solution in CH_2Cl_2 (5 ml) and the resultant solution stirred for a further 30 min. Triethylamine (1.82 ml, 12.7 mmol, 10 eq) was then added and the reaction mixture was allowed to warm to room temperature and stir for 2 h. Aqueous saturated NaHCO₃ (5 ml) was

_

³ Molander, G. A.; Cameron, K. O. J. Am. Chem. Soc. **1993**, 115, 830.

⁴ Takeoka, G. R.; Buttery, R. G.; Perrino, C. T. J. Agric. Food Chem. 1995, 43, 22.

then added, and the aqueous layer was separated and extracted with EtOAc (4 x 10 ml). The combined organic extracts were dried (MgSO₄), and concentrated *in vacuo* to give the crude product. Purification by column chromatography (eluting with 80% EtOAc in petroleum ether (40-60°C)) gave 4-oxo-hexanal **19** (103 mg, 0.90 mmol, 73%) as a pale yellow oil: n_{max} (neat)/cm⁻¹ 2980s, 1735s (aldehyde C=O), 1719s (ketone C=O), 1459s, 1420s, 1116m and 1089m; d_H (400 MHz, CDCl₃) 1.01 (3H, t, *J* 7.3, C(O)CH₂CH₃), 2.41 (2H, q, *J* 7.3, C(O)CH₂), 2.64 – 2.72 (4H, m, 2 x CH₂) and 9.70 (1H, s, CHO); d_C (100 MHz, CDCl₃) 8.2 (*C*H₃), 34.6 (*C*H₂), 36.3 (C(O)*C*H₂), 37.9 (*C*H₂), 200.9 (*C*HO) and 209.6 (*C*(O)); m/z (CI mode, isobutane) 127 (10%), 115 ((M + H)⁺ 100), 99 (95), 97 (5) and 71 (5); (Found: (M + H)⁺, 115.0759. C₆H₁₁O₂ requires *M*, 115.0759).

4-Oxo-5-phenyl-pentanal 20⁵

DMSO (261 ml, 3.68 mmol, 4 eq) was added to a stirred solution of (COCl)₂ (161 ml, 1.84 mmol, 2 eq) in CH₂Cl₂ (7 ml) at –78°C and the resulting solution was stirred for 10 min. 5-Phenyl-pentane-1,4-diol (165 mg, 0.92 mmol, 1 eq) was then added as a solution in CH₂Cl₂ (3 ml) and the resultant solution stirred for a further 30 min. Triethylamine (1.32 ml, 9.2 mmol, 10 eq) was then added and the reaction mixture was allowed to warm to room temperature and stir for 2 h. Aqueous saturated NaHCO₃ (5 ml) was then added, and the aqueous layer was separated and extracted with EtOAc (4 x 10 ml). The combined organic extracts were dried (MgSO₄), and concentrated *in vacuo* to give the crude product. Purification by column chromatography (eluting with 20% EtOAc in petroleum ether (40-60°C)) gave 4-oxo-5-phenyl-pentanal **20** (116 mg, 0.66 mmol, 72%) as a pale yellow oil: n_{max} (neat)/cm⁻¹ 2826m, 2727m, 1702bs (2 x C=O), 1603m, 1584m, 1498m, 1454m, 1413m, 1092m, 1036m and 1002w; d_H (400 MHz, CDCl₃) 2.64 – 2.72 (4H, m, 2 x CH₂), 3.69 (2H, s,

_

⁵ Brown, E.; Paterne, M. Bull. Soc. Chim. Fr. **1974**, 1001.

C H_2 Ph), 7.14 – 7.35 (5H, m, 5 x Ar CH) and 9.71 (1H, s, CHO); d_C (100 MHz, CDCl₃) 34.4 (CH₂), 37.9 (CH₂), 50.4 (CH₂Ph), 127.5 (Ar CH), 129.2 (2 x Ar CH), 129.8 (2 x Ar CH), 134.4 (Ar C), 200.7 (CHO) and 206.6 (C(O)); m/z (EI mode) 176 ((M^{+*}) 20%), 165 (5), 148 (5), 117 (3), 115 (3), 85 (100), 65 (15), 57 (10) and 51 (5); (Found: (M^{+*}), 176.0836. C_{11} H₁₂O₂ requires M, 176.0837).

General Horner-Wittig Olefination Procedure C

(Z)-3-(4-Oxo-pentylidene)-tetrahydro-pyran-2-one 21Z and (E)-3-(4-Oxo-pentylidene)-tetrahydro-pyran-2-one 21E

 K_2CO_3 (643 mg, 4.65 mmol, 1.1 eq) was added to a solution of 18-crown-6 (1.23 g, 4.65 mmol, 1.1 eq) and 3-(diethoxyphosphinyl)-tetrahydro-pyran-2-one **16** (1.00 g, 4.23 mmol, 1 eq) in THF (50 ml) at room temperature, and the resultant solution stirred for 2 h. 4-Oxo-pentanal **18** (509 mg, 5.08 mmol, 1.2 eq) in THF (10 ml) was then added and the solution stirred for 16 h. Aqueous saturated NH₄Cl (30 ml) was then added dropwise, and the aqueous layer was separated and extracted with Et₂O (3 x 50 ml). The combined organic extracts were dried (MgSO₄), and concentrated *in vacuo* to give the crude product. Purification by flash column chromatography (eluting with EtOAc) gave (Z)-3-(4-oxo-pentylidene)-tetrahydro-pyran-2-one **21Z** (301 mg, 1.65 mmol, 39%) as a pale yellow oil: n_{max} (neat)/cm⁻¹ 2928s, 2861s, 1733s (C=O), 1635s (C=C), 1478m, 1449m, 1116m, 1061m, 1028m and 976m; d_H (400 MHz, CDCl₃) 1.72 –1.76 (2H, m, OCH₂CH₂), 1.99 (3H, s, C(O)CH₃), 2.39 (2H, dt, *J* 1.6, 5.2, CH=CCH₂), 2.46 (2H, t, *J* 7.0, CH₂C(O)), 2.65 (2H, apparent q, *J* 7.0, CH₂CH=C), 4.11 (2H, t, *J* 5.4, OCH₂) and 5.93 (1H, tt, *J* 1.6, 7.5, CH=C); d_C (100

MHz, CDCl₃) 23.7 (OCH₂CH₂), 24.5 (CH₂CH=C), 29.7 (CH=CCH₂), 30.1 (C(O)CH₃), 43.2 (CH₂C(O)), 69.1 (OCH₂), 126.2 (CH=C), 146.1 (CH=C), 165.9 (C(O)O) and 208.5 (C(O)).

(Z)-3-(4-Oxo-hexylidene)-tetrahydro-pyran-2-one 22Z and (E)-3-(4-Oxo-hexylidene)-tetrahydro-pyran-2-one 22E

As for general procedure C. Reaction of 3-(diethoxyphosphinyl)-tetrahydro-pyran-2-one **16** (207 mg, 0.88 mmol, 1 eq) with 4-oxo-hexanal **19** (100 mg, 0.88 mmol, 1 eq) for 18 h, after purification by column chromatography (eluting with 80% EtOAc in petroleum ether (40-60°C)), gave (*Z*)-3-(4-Oxo-hexylidene)-tetrahydro-pyran-2-one **22Z** (29 mg, 0.15 mmol, 17%) as a yellow oil: n_{max} (neat)/cm⁻¹ 2974w, 1709s (C=O), 1633s (C=C), 1398m, 1375m, 1124m and 1072m; d_{H} (400 MHz, CDCl₃) 0.99 (3H, t, *J* 7.3, CH₂CH₃), 1.85 (2H, apparent quintet, *J* 6.6, OCH₂CH₂), 2.36 (2H, q, *J* 7.3, CH₂CH₃), 2.48, (2H, dt, *J* 1.6, 7.1, CH=C*C*H₂), 2.53 (2H, t, *J* 7.1 CH₂C(O)), 2.76 (2H,

apparent q, J 7.1, $CH_2CH=C$), 4.21 (2H, t, J 5.5, CH_2O) and 6.03 (1H, tt, J 1.6, 7.6, CH=C); d_C (100 MHz, $CDCl_3$) 8.2 (CH_3), 23.7 (OCH_2CH_2), 24.6 ($CH_2CH=C$), 29.7 ($CH=CCH_2$), 30.1 (CH_2CH_3), 41.8 ($CH_2C(O)$), 69.1 (CH_2O), 126.1 (CH=C), 146.4 (CH=C), 166.0 (C(O)O) and 211.2 (C(O)).

Further elution gave (*E*)-3-(4-Oxo-hexylidene)-tetrahydro-pyran-2-one **22***E* (76 mg, 0.39 mmol, 44%) as a yellow oil: n_{max} (neat)/cm⁻¹ 2974m, 1704s (C=O), 1632s (C=C), 1394m, 1254m, 1169m and 1074m; d_H (400 MHz, CDCl₃) 1.00 (3H, t, *J* 7.3, CH₂CH₃), 1.86 (2H, apparent quintet, *J* 6.6, CH₂CH₂O), 2.33 (2H, apparent t, *J* 7.4, CH₂CH=C), 2.38 (2H, q, *J* 7.3, CH₂CH₃), 2.52 (2H, dt, *J* 2.3, 7.4, CH=CCH₂), 2.54 (2H, t, *J* 7.4, CH₂C(O)), 4.26 (2H, t, *J* 5.8, CH₂O) and 6.84 (1H, tt, *J* 2.3, 7.4, CH=C); d_C (100 MHz, CDCl₃) 8.1 (CH₂CH₃), 22.7 (CH₂CH=C), 23.0 (CH₂CH₂O), 24.0 (CH=CCH₂), 36.4 (CH₂CH₃), 40.6 (CH₂C(O)), 69.0 (CH₂O), 126.8 (CH=C), 144.8 (CH=C), 166.9 (*C*(O)O) and 210.1 (*C*(O)); *m/z* (EI mode) 196 ((M⁺⁺) 55%), 167 (10), 139 (100), 125 (20), 111 (30), 93 (50), 67 (40), 57 (65) and 41 (25); (Found: (M⁺⁺), 196.1100. C₁₁H₁₆O₃ requires *M*, 196.1099).

(E)-3-(4-Oxo-5-phenyl-pentylidene)-tetrahydro-pyran-2-one 23E

As for general procedure C. Reaction of 3-(diethoxyphosphinyl)-tetrahydro-pyran-2-one **16** (135 mg, 0.57 mmol, 1 eq) with 4-oxo-5-phenyl-pentanal **20** (100 mg, 0.57 mmol, 1 eq) for 18 h, after purification by column chromatography (eluting with 80% EtOAc in petroleum ether (40-60°C)), gave (E)-3-(4-Oxo-5-phenyl-pentylidene)-tetrahydro-pyran-2-one **23**E (68 mg, 0.26 mmol, 46%) as a yellow oil: n_{max} (neat)/cm⁻¹ 2897w, 1707s (C=O), 1632s (C=C), 1496m, 1396m, 1259m, 1167m and 1074m; d_H (400 MHz, CDCl₃) 1.84 (2H, apparent quintet, J 6.5, CH_2CH_2O), 2.29 (2H, apparent q, J 7.2, CH_2CH_2C), 2.46 (2H, apparent t, J 7.2, CH_2CCH_2C), 2.56 (2H, t, J 7.2,

 $CH_2C(O)$), 3.62 (2H, s, CH_2Ph), 4.22 (2H, t, J 5.4, CH_2O), 6.78 (1H, tt, J 2.4, 7.2, CH=C) and 7.05 – 7.32 (5H, m, Ar CH); d_C (100 MHz, $CDCl_3$) 22.7 ($CH_2CH=C$), 23.0 (CH_2CH_2O), 24.0 ($CH=CCH_2$), 40.3 ($CH_2C(O)$), 50.7 (CH_2Ph), 69.0 (CH_2O), 126.9 (CH=C), 127.6 (Ar CH), 129.2 (2 x Ar CH), 129.8 (2 x Ar CH), 134.3 (Ar C), 144.4 (CH=C), 166.8 (C(O)O) and 207.1 (C(O)); m/z (EI mode) 258 ((M^{+*}) 35%), 184 (2), 167 (100), 139 (30), 121 (15), 91 (70), 65 (15) and 55 (10); (Found: (M^{+*}), 258.1256. $C_{16}H_{18}O_3$ requires M, 258.1256).

(Z)-1-Benzyl-3-(4-oxo-pentylidene)-pyrrolidin-2-one 24Z and (E)-1-Benzyl-3-(4-oxo-pentylidene)-pyrrolidin-2-one 24E

18-Crown-6 (500 mg, 1.90 mmol, 5 eq) was added to a solution of 1-benzyl-3-(diethoxyphosphinyl)-pyrrolidin-2-one **17** (118 mg, 0.38 mmol, 1 eq) in THF (3 ml) at -78°C. The resultant solution was stirred for 5 min before addition of KHMDS (0.5 M in PhMe, 0.76 ml, 0.38 mmol, 1 eq). After 30 min, a solution of 4-oxo-pentanal **18** (45 mg, 0.45 mmol, 1.2 eq) in THF (3 ml) was added *via* cannula, and the solution was left to warm to room temperature and stir for 18 h. Aqueous saturated NH₄Cl (10 ml) was then added dropwise, and the aqueous layer was separated and extracted with Et₂O (3 x 20 ml). The combined organic extracts were washed with H₂O (dist.) (2 x 10 ml), dried (MgSO₄), and concentrated *in vacuo* to give the crude product. Purification by flash column chromatography (eluting with 80% EtOAc in petroleum ether (40-60°C)) gave (*Z*)-1-benzyl-3-(4-oxo-pentylidene)-pyrrolidin-2-one **24Z** (16 mg, 0.06 mmol, 16%) as a pale yellow oil: n_{max} (CDCl₃ sol^{1a})/cm⁻¹ 2255s, 1714m (ketone C=O), 1677m (amide C=O), 1651m (C=C), 1440w, 1425w, 1383w, 1278w, 1162w and 1094w; d_H (400 MHz, CDCl₃) 2.01 (3H, s, C(O)CH₃), 2.44 (2H, t, *J* 7.1, CH₂C(O)), 2.48 (2H, dt, *J* 2.4, 5.1, CH=CCH₂), 2.90 (2H, apparent q, *J* 7.2, CH₂CH=C), 3.06

(2H, t, J 5.1, CH_2N), 4.34 (2H, s, CH_2Ph), 5.76 (1H, tt, J 2.4, 7.8, C=CH) 7.07 – 7.14 (3H, m, 3 x Ar CH) and 7.16 – 7.22 (2H, m, 2 x Ar CH); d_C (100 MHz, $CDCl_3$) 21.7 ($CH_2CH=C$), 25.8 ($CH=CCH_2$), 30.0 ($C(O)CH_3$), 44.0 ($CH_2C(O)$), 44.1 (CH_2N), 47.2 (CH_2Ph), 127.9 (Ar CH), 128.6 (2 x Ar CH), 129.1 (2 x Ar CH), 130.8 (Ar C), 135.3 (CH=C), 136.9 (CH=C), 168.7 (C(O)N) and 209.0 (C(O)).

Further elution gave (*E*)-1-benzyl-3-(4-oxo-pentylidene)-pyrrolidin-2-one **24E** (52 mg, 0.20 mmol, 53%) as a pale yellow oil: n_{max} (CDCl₃ solⁿ)/cm⁻¹ 2920m, 1714s (ketone C=O), 1680 (amide C=O) 1670s (C=C), 1495m, 1448m, 1427m, 1360w, 1286m, 1256m and 1165w; d_H (400 MHz, CDCl₃) 2.00 (3H, s, C(O)CH₃), 2.30 (2H, apparent q, *J* 7.4, CH₂CH=C), 2.44 (2H, t, *J* 7.2, CH₂C(O)), 2.52 (2H, dt, *J* 2.7, 6.6, CH=CCH₂), 3.13 (2H, t, *J* 6.6, CH₂N), 4.38 (2H, s, CH₂Ph), 6.23 (1H, tt, *J* 2.7, 7.4, CH=C) 7.08 – 7.14 (3H, m, 3 x Ar CH) and 7.15 – 7.19 (2H, m, 2 x Ar CH); d_C (100 MHz, CDCl₃) 22.1 (CH=CCH₂), 23.6 (CH₂CH=C), 30.5 (C(O)CH₃), 42.4 (CH₂C(O)), 44.1 (*C*H₂N), 47.5 (*C*H₂Ph), 128.0 (Ar *C*H), 128.7 (2 x Ar *C*H), 129.1 (2 x Ar *C*H), 132.9 (Ar *C*), 131.4 (CH=C), 136.8 (CH=C), 168.6 (*C*(O)N) and 207.8 (*C*(O)); *m/z* (EI mode) 257 ((M⁺⁺) 45%), 256 (1), 214 (70), 186 (20), 171 (7), 170 (5), 118 (10), 104 (4), 91 (100), 65 (12) and 43 (22); (Found: (M⁺⁺), 257.1417. C₁₆H₁₉O₂N requires *M*, 257.1416).

rel-(1R, 2R)-Methyl-2-hydroxy-1-(3-hydroxy-propyl)-2-methyl-cyclopentanoate 25

As for general procedure A. A 1:1 mixture of (Z)-3-(4-oxo-pentylidene)-tetrahydro-pyran-2-one **21**Z and (E)-3-(4-oxo-pentylidene)-tetrahydro-pyran-2-one **21**E (50 mg, 0.27 mmol, 1 eq) after a reaction time of 30 min and purification of the crude product mixture by column chromatography (eluting with 80% EtOAc in CH₂Cl₂), gave *rel*-(1R, 2R)-methyl-2-hydroxy-1-(3-hydroxy-propyl)-2-methyl-cyclopentanoate **25** (47 mg, 0.22 mmol, 81%) as a clear, colourless oil: n_{max} (neat)/cm⁻¹ 3392bs (OH), 2953s,

1714s (C=O), 1452m, 1261m, 1194m, 1173m, 1122m, 1055m and 1007m; d_H (400 MHz, CDCl₃) 1.22 – 1.38 (2H, m, 1H from CH_2CH_2OH , 1H from CH_2), 1.33 (3H, s, CH_3), 1.45 – 1.57 (2H, m, 1H from CH_2CH_2OH , 1H from CH_2), 1.59 – 1.66 (1H, m, 1H from $CH_2C(OH)$), 1.69 – 1.82 (4H, m, 4H from CH_2), 2.35 – 2.42 (1H, m, 1H from $CH_2C(OH)$), 3.55 – 3.61 (2H, m, CH_2O) and 3.65 (3H, s, OCH_3); d_C (100 MHz, $CDCl_3$) 20.1 (CH_2), 23.6 ($CCOH_3$), 29.2 ($CCOH_2$), 31.0 ($CCOH_2$), 31.6 ($CCOOH_3$), 40.1 ($CCOOH_2$), 52.2 ($CCOOH_3$), 60.5 ($CCOOH_3$), 60.5 ($CCOOH_3$), 60.5 ($CCOOH_3$), 60.5 ($CCOOH_3$), 199 (100), 185 (40), 171 (35), 167 (30), 156 (5), 139 (10), 113 (10), 97 (15) and 85 (25); (Found: $CCOOH_3$) (Found: $CCOOH_3$), 217.1438. $CCOOH_3$ 0, requires $CCOOH_3$ 1, 217.1440).

rel-(5R, 6R)-2-Benzyl-6-hydroxy-6-methyl-2-aza-spiro[4.4]nonan-1-one 26

As for general procedure A. (E)-1-Benzyl-3-(4-oxo-pentylidene)-pyrrolidin-2-one **24**E (50 mg, 0.19 mmol, 1 eq) after a reaction time of 3 h and purification of the crude product mixture by column chromatography (eluting with 10% EtOAc in petroleum ether $(40-60^{\circ}\text{C})$, gave rel.(5R, 6R)-2-benzyl-6-hydroxy-6-methyl-2-azaspiro[4.4]nonan-1-one **26** (4.60 mg, 0.02 mmol, 9%) as a clear, colourless oil: n_{max} $(CDCl_3 sol^n)/cm^{-1} 3012s (OH), 2397m, 2256w, 1661w (C=O), 1598w, 1525w, 1483w,$ 1420w, 1382w, 1215s and 1098w; d_H (400 MHz, CDCl₃) 1.17 (3H, s, C(OH)CH₃), 1.50 - 1.67 (4H, m, 1H from $CH_2CC(OH)$, 1H from $CH_2C(OH)$, 1H from $CH_2CH_2C(OH)$, 1H from $NC(O)CCH_2$), 1.82 – 1.96 (3H, m, 1H from $CH_2CC(OH)$, 1H from $CH_2CH_2C(OH)$, 1H from $NC(O)CCH_2$), 2.25 – 2.31 (1H, m, 1H from $CH_2C(OH)$), 3.04 – 3.16 (2H, m, NC H_2), 4.36 (1H, apparent d, J 14.6, AB system, 1H from CH₂Ph), 4.47 (1H, apparent d, J 14.6, AB system, 1H from CH₂Ph), 4.97 (1H, d, J 1.5, OH), 7.15 – 7.22 (3H, m, 3 x Ar CH) and 7.23 – 7.29 (2H, m, 2 x Ar CH); d_C (100 MHz, CDCl₃) 20.7 (CH₂CH₂C(OH)), 23.0 (C(OH)CH₃), 29.6 (CH₂CC(O)N), 34.4 (CH₂C(OH)), 39.0 (CH₂CC(OH)), 44.0 (C(O)NCH₂), 47.1 (CH₂Ph), 56.2 (C), 82.9 (C(OH)), 128.1 (Ar CH), 128.4 (2 x Ar CH), 129.2 (2 x Ar CH), 136.5 (Ar C) and 178.4 (C(O)N); m/z (EI mode) 259 ((M⁺⁺) 20%), 241 (5), 216 (5), 201 (2), 188 (50), 175 (5), 149 (2), 121 (3), 114 (7), 84 (100), 83 (65) and 47 (30); (Found: (M⁺⁺), 259.1571. $C_{16}H_{21}O_2N$ requires M, 259.1572).

rel-(1R, 5R)-1-Hydroxy-1-methyl-7-oxa-spiro[4.5]decan-6-one 28 and rel-(1R, 4R/S, 5R)-4-(3-Hydroxy-propyl)-1-methyl-2-oxa-bicyclo[3.2.0]heptan-3-one 29 and rel-(1R, 2R)-Ethyl-2-hydroxy-1-(3-hydroxy-propyl)-2-methyl-cyclopentanoate 27

Dry EtOH (3 ml) was added to a stirred solution of SmI₂ (0.1 M in THF, 11 ml, 1.10 mmol, 4 eq) at 0°C and the resulting solution was stirred for 10 min. A 2.5:1 mixture of (Z)-3-(4-oxo-pentylidene)-tetrahydro-pyran-2-one **21Z** and (E)-3-(4-oxopentylidene)-tetrahydro-pyran-2-one **21**E (50 mg, 0.27 mmol, 1 eq) in THF (1 ml) was added, and the resultant solution stirred at 0°C for 40 min. The reaction was quenched by opening to the air, followed by the addition of aqueous saturated NaCl (10 ml). The aqueous layer was separated and extracted with EtOAc. The combined organic extracts were dried (MgSO₄) and concentrated in vacuo to give the crude product. Purification by column chromatography (eluting with 30% EtOAc in CH₂Cl₂), gave rel-(1R, 5R)-1-hydroxy-1-methyl-7-oxa-spiro[4.5]decan-6-one **28** (6 mg, 0.03 mmol, 12 %) as a pale yellow oil: n_{max} (neat)/cm⁻¹ 3417bs (OH), 2962s, 1714s (C=O), 1450m, 1394m, 1263m, 1146s and 962s; d_H (400 MHz, CDCl₃) 1.19 $(3H, s, CH_3)$, 1.55 - 1.66 $(3H, m, 3H from CH_2)$, 1.75 - 1.95 $(6H, m, 1H from CH_2)$ $CH_2C(OH)$, 5H from CH_2), 2.23 – 2.28 (1H, m, 1H from $CH_2C(OH)$), 4.22 – 4.29 $(1H, m, 1H \text{ from } CH_2O), 4.33 - 4.39 (1H, m, 1H \text{ from } CH_2O) \text{ and } 4.65 (1H, s, OH);$ d_c (100 MHz, CDCl₃) 19.1 (CH₂), 19.8 (CH₂), 21.7 (CH₃), 26.8 (CH₂), 34.8 $(CH_2C(OH))$, 37.1 (CH_2) , 53.8 (C), 68.8 (CH_2O) , 82.4 (C(OH)) and 176.5 (C(O)); m/z(EI mode) 184 ((M⁺⁺) 5%), 166 (5), 151 (2), 126 (30), 113 (100), 84 (45), 83 (70), 67 (20) and 43 (40); (Found: (M^{+*}) , 184.1099. $C_{10}H_{16}O_3$ requires M, 184.1099).

Further elution then gave *rel*-(1R, 4R/S, 5R)-4-(3-hydroxy-propyl)-1-methyl-2-oxabicyclo[3.2.0]heptan-3-one **29** (5 mg, 0.03 mmol, 10%) as a clear, colourless oil:

Characterised as a single diastereoisomer

 n_{max} (CDCl₃ solⁿ)/cm⁻¹ 3011s (OH), 2402m, 1755m (C=O), 1514w, 1420w, 1225s and 1015w; d_H (400 MHz, CDCl₃) 1.42 (3H, s, CCH₃), 1.49 – 1.66 (4H, m, 1H from $CH_2CH_2CH_2OH$, 2H from CH_2CH_2OH , 1H from CCH_2CH_2CH), 1.73 – 1.78 (1H, m, 1H from $CH_2CH_2CH_2OH$), 2.10 – 2.20 (3H, m, 3H from CCH_2CH_2CH), 2.45 – 2.47 (1H, m, CH_2CH_2CH), 2.54 (1H, dt, J 2.7, 5.9, CHC(O)) and 3.61 (2H, t, J 5.7, CH_2OH); d_C (100 MHz, CDCl₃) 21.4 (CH_2), 24.8 (CCH_3), 29.1 ($CH_2CH_2CH_2OH$), 30.7 (CH_2CH_2OH), 33.5 (CH_2), 45.1 (CH_2CHCH), 49.6 (CHC(O)), 62.7 (CH_2OH), 87.0 ($C(CH_3)O$) and 180.6 (C(O)); m/z (CI mode, isobutane) 185 ((M + H)⁺ 100), 167 (15), 139 (2), 129 (10), 97 (3), 85 (85) and 71 (7); (Found: M + M)⁺, 185.1177. $C_{10}H_{17}O_3$ requires M, 185.1178).

Further elution then gave rel-(1R, 2R)-ethyl-2-hydroxy-1-(3-hydroxy-propyl)-2-methyl-cyclopentanoate **27** (20 mg, 0.09 mmol, 41%) as a clear, colourless oil: n_{max} (neat)/cm⁻¹ 3406bs (OH), 2958m, 1709s (C=O), 1446m, 1369m, 1265m, 1180m, 1122m, 1055m and 1030m; d_H (400 MHz, CDCl₃) 1.22 (3H, t, J 7.1, CH₂CH₃), 1.22 – 1.29 (1H, m, 1H from CH₂), 1.30 (3H, s, C(OH)CH₃), 1.37 – 1.42 (1H, m, 1H from CH₂), 1.47 – 1.53 (2H, m, CH₂), 1.58 – 1.79 (5H, m, 1H from CH₂C(OH) 4H from CH₂), 2.33 – 2.41 (1H, m, 1H from CH₂C(OH)), 3.50 – 3.60 (2H, m, CH₂OH) and 4.11 (2H, q, J 7.1, OCH₂CH₃); d_C (100 MHz, CDCl₃) 14.7 (OCH₂CH₃), 20.0 (CH₂), 23.6 (C(OH)CH₃), 29.2 (CH₂), 30.9 (CH₂), 31.6 (CH₂C(OH)), 40.1 (CH₂), 60.3 (CC(O)), 61.0 (OCH₂CH₃), 63.4 (CH₂OH), 83.3 (C(OH)) and 176.1 (C(O)); m/z (CI mode, isobutane) 231 ((M + H)⁺ 100), 213 (100), 185 (70), 167 (90), 139 (30), 113 (5), 99 (5), 85 (5) and 81 (2); (Found: (M + H)⁺, 231.1585. C₁₂H₂₃O₄ requires M, 231.1596).

General Cyclobutane-forming Procedure D

rel-(1R, 4R/S, 5R)-4-(2-Hydroxy-ethyl)-1-methyl-2-oxa-bicyclo[3.2.0]heptan-3-one 30

Dry 'BuOH (6.5 ml) was added to a stirred solution of SmI₂ (0.1 M in THF, 24 ml, 2.40 mmol, 4 eq) at 0°C and the resulting solution was stirred for 10 min. (*E*)-3-(4-Oxo-pentylidene)-dihydro-furan-2-one **6** (100 mg, 0.60 mmol, 1 eq) in THF (2 ml) was added, and the resultant solution stirred at 0°C for 4 h. The reaction was quenched by opening to the air, followed by the addition of aqueous saturated NaCl (10 ml). The aqueous layer was separated and extracted with 80% EtOAc in petroleum ether (40-60°C) (4 x 15 ml). The combined organic extracts were dried (MgSO₄) and concentrated *in vacuo* to give the crude product. Purification by column chromatography (eluting first with 80% EtOAc in petroleum ether (40-60°C), then with 30% Et₂O in CHCl₃), gave *rel*-(1R, 4R/S, 5R)-4-(2-hydroxy-ethyl)-1-methyl-2-oxa-bicyclo[3.2.0]heptan-3-one **30** (65 mg, 0.38 mmol, 64%) as a clear, colourless oil:

Characterised as a mixture of diastereoisomers

n_{max} (neat)/cm⁻¹ 3406bs (OH), 2941m, 1745s (C=O), 1383m, 1250m, 1174m, 1122m, 1057m and 949m; d_H (400 MHz, CDCl₃) 1.37 (3H, s, CH₃ from minor), 1.43 (3H, s, CH₃ from major), 1.64 – 2.23 (12H, m, 3 x CH₂ from minor, 3 x CH₂ from major), 2.48 – 2.50 (1H, m, CH₂CHCHC(O) from major), 2.70 (1H, dt, *J* 2.8, 7.5, CH₂CHCHC(O) from major), 2.79 – 2.91 (2H, m, 2 x CH from minor) and 3.60 – 3.77 (4H, m, CH₂OH from minor, CH₂OH from major); d_C (100 MHz, CDCl₃) 17.2 (CH₂ from minor), 21.5 (CH₂ from major), 23.7 (CH₃ from minor),), 24.8 (CH₃ from major), 29.0 (CH₂ from minor), 32.2 (CH₂ from major), 33.4 (CH₂ from minor), 35.3 (CH₂ from major), 42.3 (CH from minor), 43.2 (CH from minor), 45.2 (CHCHC(O) from major), 47.2 (CHCHC(O) from major), 60.9 (CH₂OH from major), 61.7

(CH_2OH from minor), 87.5 ($C(CH_3)O$ from major), 88.1 ($C(CH_3)O$ from minor), 180.1 (C(O) from minor) and 181.2 (C(O) from major); m/z (CI mode, isobutane) 341 (35%), 209 (15), 171 ((M + H)⁺ 100), 153 (70), 115 (20) and 109 (5); (Found: (M + H)⁺, 171.1021. $C_9H_{15}O_3$ requires M, 171.1021).

rel-(1R, 4R/S, 5R)-1-Ethyl-4-(2-hydroxy-ethyl)-2-oxa-bicyclo[3.2.0]heptan-3-one 31

As for general procedure D. (*E*)-3-(4-Oxo-hexylidene)-dihydro-furan-2-one **7** (40 mg, 0.22 mmol, 1 eq), after reaction time of 1 h and purification of the crude product mixture by column chromatography (eluting with 60% EtOAc in petroleum ether (40-60°C)) gave rel-(1R, 4R/S, 5R)-1-ethyl-4-(2-hydroxy-ethyl)-2-oxabicyclo[3.2.0]heptan-3-one **31** (12 mg, 0.07 mmol, 31%) as a clear, colourless oil:

Characterised as a mixture of diastereoisomers

n_{max} (neat)/cm⁻¹ 3406bs (OH), 2941m, 1743s (C=O), 1462m, 1209m, 1132m, 1115m, 1024m and 943m; d_H (400 MHz, CDCl₃) 0.86 (3H, t, *J* 7.4, CH₃ from minor), 0.88 (3H, t, *J* 7.4, CH₃ from major), 1.61 – 2.19 (16H, m, 4 x CH₂ from minor, 4 x CH₂ from major), 2.47 – 2.50 (1H, m, CHCHC(O) from major), 2.71 (1H, dt, *J* 3.0, 7.6, CHCHC(O) from major), 2.81 – 2.88 (1H, m, CHCHC(O) from minor), 2.91 – 2.98 (1H, m, CHCHC(O) from minor) and 3.58 – 3.77 (4H, m, CH₂OH from minor, CH₂OH from major); d_C (100 MHz, CDCl₃) 7.9 (CH₃ from minor), 8.0 (CH₃ from major), 16.9 (CH₂ from minor), 21.8 (CH₂ from major), 29.2 (CH₂ from minor), 30.3 (CH₂ from minor), 30.4 (CH₂ from minor), 30.6 (CH₂ from major), 31.5 (CH₂ from major), 41.4 (CHCHC(O) from minor), 42.8 (CHCHC(O) from minor), 43.3 (CHCHC(O) from major), 47.2 (CHCHC(O) from major), 61.0 (CH₂OH from major), 61.7 (CH₂OH from minor), 90.3 (C(CH₂CH₃)O from major),

91.2 ($C(CH_2CH_3)O$ from minor), 180.4 (C(O) from minor) and 181.5 (C(O) from major); m/z (CI mode, isobutane) 223 (5%), 199 (15), 185 ((M + H)⁺ 100), 183 (50), 167 (20), 115 (15), 113 (2) and 81 (5); (Found: (M + H)⁺, 185.1179. $C_{10}H_{17}O_3$ requires M, 185.1178).

rel-(1R, 4R/S, 5R)-4-(2-Hydroxy-ethyl)-1-isopropyl-2-oxa-bicyclo[3.2.0]heptan-3-one 32

As for general procedure D. (*E*)-3-(5-methyl-4-oxo-hexylidene)-dihydro-furan-2-one **8** (50 mg, 0.26 mmol, 1 eq), after reaction time of 1 h and purification of the crude product mixture by column chromatography (eluting with 50% EtOAc in petroleum ether (40-60°C)) gave rel-(1R, 4R/S, 5R)-4-(2-hydroxy-ethyl)-1-isopropyl-2-oxabicyclo[3.2.0]heptan-3-one **32** (28 mg, 0.14 mmol, 54%) as a clear, colourless oil:

Characterised as a mixture of diastereoisomers

n_{max} (neat)/cm⁻¹ 3410bs (OH), 2962m, 1743s (C=O), 1470m, 1236m, 1209m, 1167m, 1053m and 947m; d_H (400 MHz, CDCl₃) 0.83 (3H, d, *J* 6.9, CH₃), 0.85 (3H, d, *J* 6.9, CH₃), 0.87 (3H, d, *J* 6.9, CH₃), 0.91 (3H, d, *J* 6.9, CH₃), 1.58 – 2.22 (14H, m, 3 x CH₂ from minor, 3 x CH₂ from major, CH(CH₃)₂ from minor, CH(CH₃)₂ from major), 2.52 – 2.54 (1H, m, CH from minor), 2.70 – 2.73 (1H, m, CH from minor), 2.81 (1H, dt, *J* 1.7, 8.1, CH from major), 2.97 (1H, apparent q, *J* 8.1, CH from major) and 3.58 – 3.79 (4H, m, CH₂OH from minor, CH₂OH from major); d_C (100 MHz, CDCl₃) 14.8 (CH₃), 14.9 (CH₃), 14.9 (CH₃), 15.0 (CH₂), 15.2 (CH₃), 20.4 (CH₂), 27.7 (CH₂), 27.9 (CH₂), 28.6 (CH₂), 32.5 (CH(CH₃)₂), 33.5 (CH(CH₃)₂), 33.9 (CH₂), 39.1 (CH from major), 40.5 (CH from minor), 41.5 (CH from major), 46.0 (CH from minor), 59.7 (CH₂OH from minor), 60.2 (CH₂OH from major), 91.3 (CCH from minor), 92.2 (CCH from major). 179.3 (CO) from major) and 180.2 (C(O) from minor); *m*/*z* (CI mode,

isobutane) 397 (20%), 237 (15), 199 ((M + H) $^+$ 100), 181 (45), 153 (15) and 95 (35); (Found: (M + H) $^+$, 199.1336. $C_{11}H_{19}O_3$ requires M, 199.1334).

rel-(1R, 4R/S, 5R)-1-Ethyl-4-(3-hydroxy-propyl)-2-oxa-bicyclo[3.2.0]heptan-3-one 33

As for general procedure D. A 2:1 mixture of (*E*)-3-(4-oxo-hexylidene)-tetrahydro-pyran-2-one **22***E* and (*Z*)-3-(4-oxo-hexylidene)-tetrahydro-pyran-2-one **22***Z* (40 mg, 0.20 mmol, 1 eq), after reaction time of 1 h and purification of the crude product mixture by column chromatography (eluting with 80% EtOAc in petroleum ether (40-60°C)) gave rel-(1R, 4R/S, 5R)-1-ethyl-4-(3-hydroxy-propyl)-2-oxabicyclo[3.2.0]heptan-3-one **33** (20 mg, 0.10 mmol, 50%) as a clear, colourless oil:

Characterised as a mixture of diastereoisomers

n_{max} (neat)/cm⁻¹ 3413bs (OH), 2939m, 1747s (C=O), 1460m, 1207m, 1055m, 1022m and 941m; d_H (400 MHz, CDCl₃) 0.85 (3H, t, *J* 7.4, C*H*₃ from minor), 0.88 (3H, t, *J* 7.4, C*H*₃ from major), 1.45 – 2.17 (20H, m, 5 x C*H*₂ from minor, 5 x C*H*₂ from major), 2.42 – 2.46 (1H, m, CHCHC(O) from major), 2.52 – 2.56 (1H, m, CHCHC(O) from major), 2.61 – 2.68 (1H, m, CHCHC(O) from minor), 2.90 (1H, apparent q, *J* 8.0, CHCHC(O) from minor) and 3.59 – 3.62 (4H, m, CH₂OH from minor, CH₂OH from major); d_C (100 MHz, CDCl₃) 7.9 (CH₃ from minor), 8.1 (CH₃ from major), 16.3 (CH₂), 21.7 (CH₂), 22.6 (CH₂), 29.0 (CH₂), 30.3 (CH₂), 30.4 (CH₂), 30.6 (CH₂), 30.7 (CH₂), 31.5 (CH₂), 31.6 (CH₂), 41.1 (CHCHC(O) from minor), 43.1 (CHCHC(O) from major), 44.4 (CHCHC(O) from minor), 49.5 (CHCHC(O) from major), 62.7 (CH₂OH from major), 62.8 (CH₂OH from minor), 89.7 (C(CH₂CH₃)O from major), 90.4 (C(CH₂CH₃)O from minor), 179.8 (C(O) from minor) and 180.9 (C(O) from major); *m*/*z* (CI mode, isobutane) 200 (10%), 199 ((M + H)⁺ 100), 181 (10), 169 (2),

129 (5), 115 (2), 85 (10) and 71 (10); (Found: $(M + H)^+$, 199.1335. $C_{11}H_{19}O_3$ requires M, 199.1334).

rel-(1S, 4R/S, 5R)-1-Benzyl-4-(3-hydroxy-propyl)-2-oxa-bicyclo[3.2.0]heptan-3-one 34

As for general procedure D. (*E*)-3-(4-Oxo-5-phenyl-pentylidene)-tetrahydro-pyran-2-one **23***E* (20 mg, 0.08 mmol, 1 eq), after reaction time of 2.5 h and purification of the crude product mixture by column chromatography (eluting with 80% EtOAc in petroleum ether (40-60°C)) gave *rel*-(1S, 4R/S, 5R)-1-benzyl-4-(3-hydroxy-propyl)-2-oxa-bicyclo[3.2.0]heptan-3-one **34** (7 mg, 0.03 mmol, 34%) as a clear, colourless oil:

Characterised as a mixture of diastereoisomers

 n_{max} (neat)/cm⁻¹ 3408bs (OH), 2941m, 1747s (C=O), 1454m, 1261m, 1171m, 1053m and 947; d_{H} (400 MHz, CDCl₃) 0.60 – 0.70 (1H, m, 1H from C H_2 from major), 1.13 – 1.20 (1H, m, 1H from C H_2 from major), 1.30 – 1.99 (9H, m, CH from minor, 2 x C H_2 from minor, 2 x C H_2 from minor, 2 x C H_2 from major), 2.12 – 2.26 (4H, m, C H_2 from minor, C H_2 from major), 2.34 – 2.40 (1H, m, CH from major), 2.49 – 2.55 (1H, m, CH from major), 2.82 (1H, d, J 14.1, AB system, 1H from C H_2 Ph from minor), 2.83 (1H, d, J 14.2, AB system, 1H from C H_2 Ph from major), 2.95 (1H, apparent q, J 7.8, CH from minor), 3.03 (1H, d, J 14.1, AB system, 1H from C H_2 Ph from minor), 3.09 (1H, d, J 14.2, AB system, 1H from C H_2 Ph from major), 3.35 – 3.45 (2H, m, C H_2 OH from major), 3.46 – 3.52 (2H, m, C H_2 OH from minor) and 7.13 – 7.29 (10H, m, Ar CH from minor, Ar CH from major); d_{C} (100 MHz, CDCl₃) 15.3 (CH₂), 20.4 (CH₂), 20.9 (CH₂), 26.4 (CH₂), 29.2 (CH₂), 29.8 (CH₂), 30.0 (CH₂), 31.0 (CH₂), 39.8 (CH from minor), 40.7 (CH from major), 42.2 (CH₂Ph from minor), 42.3 (CH₂Ph from major), 42.7 (CH

from minor), 48.1 (*C*H from major), 61.2 (*C*H₂OH from major), 61.3 (*C*H₂OH from minor), 87.7 (*C*(CH₂Ph)O from major), 87.8 (*C*(CH₂Ph)O from minor), 125.9 (Ar *C*H from minor), 126.0 (Ar *C*H from major), 127.4 (2 x Ar *C*H from major), 127.5 (2 x Ar *C*H from minor), 128.8 (2 x Ar *C*H from minor), 129.2 (4 (2 x Ar *C*H from major), 134.3 (Ar *C* from minor), 134.5 (Ar *C* from major), 178.2 (*C*(O) from minor) and 179.2 (*C*(O) from major); *m/z* (EI mode) 260 ((M⁺⁺) 10%), 232 (5), 214 (20), 186 (20), 169 (70), 141 (40), 123 (100), 91 (80), 81 (40), 67 (20) and 41 (15); (Found: (M⁺⁺), 260.1412. C₁₆H₂₀O₃ requires *M*, 260.1412).

rel-(1R, 4R, 5R)-Ethyl-2-(1-methyl-3-oxo-2-oxa-bicyclo[3.2.0]hept-4-yl)-4-nitrobenzoate 35

4-Nitrobenzoyl chloride (46 mg, 0.25 mmol, 2 eq) was added to a stirred solution of 4-(2-hydroxy-ethyl)-1-methyl-2-oxa-bicyclo[3.2.0]heptan-3-one **30** (21 mg, 0.12 mmol, 1 eq) in pyridine (1 ml) at room temperature. The solution was stirred for 2 h before addition of H_2O (dist.) (1 ml). The aqueous layer was separated and extracted with EtOAc (4 x 10 ml). The combined organic extracts were dried (MgSO₄), and concentrated *in vacuo* to give the crude product. Purification by column chromatography (eluting with 30% Et_2O in CHCl₃) gave rel-(1R, 4R, 5R)-ethyl-2-(1-methyl-3-oxo-2-oxa-bicyclo[3.2.0]hept-4-yl)-4-nitrobenzoate **35** (20 mg, 0.06 mmol, 51%) as white crystals: mp 130 – 133°C (in EtOH): n_{max} (golden gate)/cm⁻¹ 2954w, 1743s (lactone C=O), 1724s (ester C=O), 1520s, 1344m, 1269s, 1236s, 1119s, 1103s, 1011m, 958s, 877s and 839s; d_H (400 MHz, CDCl₃) 1.43 (3H, s, CH_3), 1.63 – 1.68 (1H, m, 1H from CCH_2CH_2CH), 1.93 – 2.02 (1H, m, 1H from CH_2CH_2O), 2.10 – 2.28 (4H, m, 3H from CCH_2CH_2CH , 1H from CH_2CH_2O), 2.51 – 2.56 (1H, m, CHCHC(O)), 2.70 (1H, dt, CCHCHC(O)), 4.37 – 4.48 (2H, m, CCHCHC(O)), 8.14 (2H, apparent dt, CCHCHC(O)), 8.9, 2 x Ar CCH(CHC(O)), 4.37 – 4.48 (2H, m, CCHCHC(O)), 8.9, 2 x Ar CCH(CHC(O)), 4.37 – 4.48 (2H, m, CCHCHC(O)), 8.9, 2 x Ar CCH(CHC(O)), 4.37 – 4.48 (2H, m, CCHCHC(O)), 8.9, 2 x Ar CCH(CHC(O)), 4.37 – 4.48 (2H, m, CCHCHC(O)), 8.9, 2 x Ar CCH(CHC(O)), 4.37 – 4.48 (2H, m, CCHCHC(O)), 8.9, 2 x Ar CCH(CHC(O)), 4.37 – 4.48 (2H, m, CCHCHC(O)), 8.9, 2 x Ar CCH(CHC(O)), 4.37 – 4.48 (2H, m, CCHCHC(O)), 8.9, 2 x Ar CCH(CHC(O)), 4.37 – 4.48 (2H, m, CCHCHC(O)), 8.9, 2 x Ar CCH(CHC(O)), 4.37 – 4.48 (2H, m, CCHCHC(O)), 8.9, 2 x Ar CCH(CHC(O)), 4.37 – 4.48 (2H, m, CCHCHC(O)), 8.9, 2 x Ar CCH(CHC(O)), 4.37 – 4.48 (2H, m, CCHCHC(O)), 8.9, 2 x Ar CCH(CHC(O)), 4.37 – 4.48 (2H, m, CCHCHC(O)), 8.9, 2 x Ar CCH(CHC(O)), 4.37 – 4.48 (2H, m, CCHCHC(O)), 8.9, 2 x Ar CCH(CHC(O)), 4.37 – 4.48 (2H, m, CCHCHC(O)),

CH); d_C (100 MHz, CDCl₃) 21.4 (1C from CCH₂CH₂CH), 24.7 (CH₃), 31.3 (CH₂CH₂O), 33.6 (1C from CCH₂CH₂CH), 44.6 (CHCHC(O)), 46.9 (CHC(O)), 63.6 (CH₂O), 86.9 (C(CH₃)O), 124.0 (2 x Ar CH), 131.2 (2 x Ar CH), 135.6 (Ar C(O)C), 151.1 (Ar CNO₂), 164.9 (Ar C(O)) and 179.7 (C(O)O); m/z (CI mode, isobutane) 320 ((M + H)⁺ 100), 290 (50), 171 (15), 153 (10), 138 (5), 120 (25), 113 (5), 97 (5), 85 (5) and 71 (10); (Found: (M + H)⁺, 320.1135. C₁₆H₁₈O₆N requires M, 320.1134).

rel-(1S, 4R/S, 5R)-1-Cyclopropyl-4-(2-hydroxy-ethyl)-2-oxa-bicyclo[3.2.0]heptan-3-one 36

As for general procedure E. (*E*)-3-(4-Oxo-4-cyclopropyl-butylidene)-dihydro-furan-2-one **10** (50 mg, 0.26 mmol, 1 eq), after reaction time of 2.5 h and purification of the crude product mixture by column chromatography (eluting with 50% EtOAc in petroleum ether (40-60°C), then with 30% Et_2O in CHCl₃) gave rel-(1S, 4R/S, 5R)-1-cyclopropyl-4-(2-hydroxy-ethyl)-2-oxa-bicyclo[3.2.0]heptan-3-one **36** (36 mg, 0.18 mmol, 70%) as a clear, colourless oil:

Characterised as a mixture of diastereoisomers

 n_{max} (neat)/cm⁻¹ 3413bs (OH), 2943m, 1743s (C=O), 1238m, 1167m, 1051m and 945m; d_{H} (400 MHz, CDCl₃) 0.28 – 0.32 (4H, m, OCCH(C H_2)₂^A from minor, OCCH(C H_2)₂^B from major), 0.46 – 0.52 (4H, m, OCCH(C H_2)₂^B from minor, OCCH(C H_2)₂ from major), 1.02 – 1.10 (2H, m, OCCH(C H_2)₂ from minor, OCCH(CH₂)₂ from major), 1.62 – 2.12 (12H, m, 3 x C H_2 from minor, 3 x C H_2 from major), 2.42 – 2.46 (1H, m, CH from major), 2.67 – 2.71 (1H, m, CH from major), 2.81 – 2.88 (2H, m, 2 x CH from minor), 3.57 – 3.62 (1H, m, 1H from C H_2 OH from minor) and 3.68 – 3.78 (3H, m, 1H from C H_2 OH from minor, C H_2 OH from major); d_{C} (100 MHz, CDCl₃) –0.4 (OCH(CH₂)₂^{AB}), –0.3 (OCH(CH₂)₂^{AB}), –0.1 (OCH(CH₂)₂^{AB}),

0.0 (OCH(CH_2)₂^{AB}), 14.0 (O $CH(CH_2$)₂), 14.6 (O $CH(CH_2$)₂), 15.1 (CH_2), 20.0 (CH_2), 27.2 (CH_2), 27.5 (CH_2), 28.4 (CH_2), 33.4 (CH_2), 39.1 (CH_2), 40.7 (CH_2), 41.4 (CH_2), 45.1 (CH_2), 59.1 (CH_2 OH), 59.8 (CH_2 OH), 88.4 (CCH_2), 89.1 (CCH_2), 178.3 (CCH_2) and 179.3 (CCH_2); m/z (CI_2 mode, isobutane) 197 ((CI_2), 100), 179 (10), 169 (1), 151(2), 135 (2), 15 (5), 93 (2), 85 (2) and 71 (2); (Found: (CI_2), 197.1177. CI_1H_1 7O₃ requires CI_2 1 requires CI_2 2 requires CI_2 3 requires CI_2 4 requires CI_2 4 requires CI_2 5 requires CI_2 6 requires CI_2 6 requires CI_2 6 requires CI_2 6 requires CI_2 7 requires CI_2 8 requires CI_2 8 requires CI_2 9 require